6 M ar 2 00 3 Bernoulli Numbers , Wolstenholme ’ s Theorem , and p 5 Variations of Lucas ’ Theorem ∗

نویسنده

  • Jianqiang Zhao
چکیده

In [7] we further proved that H1(p−1) ≡ 0 (mod p ) if and only if p divides the numerator of Bp−3, which never happens for primes less than 12 million [2]. There is another important equivalent statement of Wolstenholme’s Theorem by using combinatorics. D.F. Bailey [1] generalizes it to the following form. Theorem 1.1. ([1, Theorem 4]) Let n and r be non-negative integers and p ≥ 5 be a prime. Then

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 7 M ar 2 00 3 Bernoulli Numbers , Wolstenholme ’ s Theorem , and p 5 Variations of Lucas ’ Theorem ∗

In [7, Proposition 2.9] we further proved that H1(p − 1) ≡ 0 (mod p ) if and only if p divides the numerator of Bp(p−1)−2, which never happens for primes less than 12 million. There is another important equivalent statement of Wolstenholme’s Theorem by using combinatorics. D.F. Bailey [1] generalizes it to the following form. Theorem 1.1. ([1, Theorem 4]) Let n and r be non-negative integers an...

متن کامل

Bernoulli numbers , Wolstenholme ’ s theorem , and p 5 variations of Lucas ’ theorem ✩

In this note we shall improve some congruences of G.S. Kazandzidis and D.F. Bailey to higher prime power moduli, by studying the relation between irregular pairs of the form (p,p− 3) and a refined version of Wolstenholme’s theorem. © 2006 Elsevier Inc. All rights reserved. MSC: primary 11A07, 11Y40; secondary 11A41, 11M41

متن کامل

ar X iv : m at h - ph / 0 50 80 66 v 1 3 1 A ug 2 00 5 ELLIPTIC FAULHABER POLYNOMIALS AND LAMÉ DENSITIES OF STATES

A generalisation of the Faulhaber polynomials and Bernoulli numbers related to elliptic curves is introduced and investigated. This is applied to compute the density of states for the classical Lamé operators.

متن کامل

A new approach to Bernoulli polynomials

Six approaches to the theory of Bernoulli polynomials are known; these are associated with the names of J. Bernoulli [2], L. Euler [4], E. Lucas [8], P. E. Appell [1], A. Hürwitz [6] and D. H. Lehmer [7]. In this note we deal with a new determinantal definition for Bernoulli polynomials recently proposed by F. Costabile [3]; in particular, we emphasize some consequent procedures for automatic c...

متن کامل

Congruences concerning Bernoulli numbers and Bernoulli polynomials

Let {Bn(x)} denote Bernoulli polynomials. In this paper we generalize Kummer’s congruences by determining Bk(p−1)+b(x)=(k(p − 1) + b) (modp), where p is an odd prime, x is a p-integral rational number and p − 1 b. As applications we obtain explicit formulae for ∑p−1 x=1 (1=x ) (modp ); ∑(p−1)=2 x=1 (1=x ) (modp ); (p − 1)! (modp ) and Ar(m;p) (modp), where k ∈ {1; 2; : : : ; p− 1} and Ar(m;p) i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007